Exercises for Section 4.1

- 1. Determine a condition on |x 1| that will assure that: (a) $|x^2 - 1| < \frac{1}{2}$, (b) $|x^2 - 1| < 1/10^{-3}$, (c) $|x^2 - 1| < 1/n$ for a given $n \in \mathbb{N}$, (d) $|x^3 - 1| < 1/n$ for a given $n \in \mathbb{N}$.
- 2. Determine a condition on |x 4| that will assure that:
 - (a) $|\sqrt{x}-2| < \frac{1}{2}$, (b) $|\sqrt{x}-2| < 10^{-2}$.
- 3. Let c be a cluster point of $A \subseteq \mathbb{R}$ and let $f : A \to \mathbb{R}$. Prove that $\lim_{x \to c} f(x) = L$ if and only if $\lim_{x \to c} |f(x) L| = 0$.
- 4. Let $f := \mathbb{R} \to \mathbb{R}$ and let $c \in \mathbb{R}$. Show that $\lim_{x \to 0} f(x) = L$ if and only if $\lim_{x \to 0} f(x+c) = L$.
- 5. Let I := (0, a) where a > 0, and let $g(x) := x^2$ for $x \in I$. For any points $x, c \in I$, show that $|g(x) c^2| \le 2a|x c|$. Use this inequality to prove that $\lim_{x \to c} x^2 = c^2$ for any $c \in I$.
- 6. Let *I* be an interval in \mathbb{R} , let $f : I \to \mathbb{R}$, and let $c \in I$. Suppose there exist constants *K* and *L* such that $|f(x) L| \le K|x c|$ for $x \in I$. Show that $\lim_{x \to 0} f(x) = L$.
- 7. Show that $\lim_{x \to 0} x^3 = c^3$ for any $c \in \mathbb{R}$.
- 8. Show that $\lim_{x \to \infty} \sqrt{x} = \sqrt{c}$ for any c > 0.
- 9. Use either the ε - δ definition of limit or the Sequential Criterion for limits, to establish the following limits.
 - (a) $\lim_{x \to 2} \frac{1}{1-x} = -1$, (b) $\lim_{x \to 1} \frac{x}{1+x} = \frac{1}{2}$, (c) $\lim_{x \to 0} \frac{x^2}{|x|} = 0$, (d) $\lim_{x \to 1} \frac{x^2 - x + 1}{x+1} = \frac{1}{2}$.
- 10. Use the definition of limit to show that

(a)
$$\lim_{x \to 2} (x^2 + 4x) = 12$$
, (b) $\lim_{x \to -1} \frac{x + 5}{2x + 3} = 4$.

11. Use the definition of limit to prove the following.

(a)
$$\lim_{x \to 3} \frac{2x+3}{4x-9} = 3$$
, (b)

$$\lim_{x \to 6} \frac{x^2 - 3x}{x + 3} = 2.$$

- 12. Show that the following limits do not exist.
 - (a) $\lim_{x\to 0} \frac{1}{x^2}$ (x > 0), (b) $\lim_{x\to 0} \frac{1}{\sqrt{x}}$ (x > 0), (c) $\lim_{x\to 0} (x + \text{sgn}(x))$, (d) $\lim_{x\to 0} \sin(1/x^2)$.
- 13. Suppose the function $f : \mathbb{R} \to \mathbb{R}$ has limit *L* at 0, and let a > 0. If $g : \mathbb{R} \to \mathbb{R}$ is defined by g(x) := f(ax) for $x \in \mathbb{R}$, show that $\lim_{x \to 0} g(x) = L$.
- 14. Let $c \in \mathbb{R}$ and let $f : \mathbb{R} \to \mathbb{R}$ be such that $\lim_{x \to \infty} (f(x))^2 = L$.
 - (a) Show that if L = 0, then $\lim_{x \to 0} f(x) = 0$.
 - (b) Show by example that if $L \neq 0$, then f may not have a limit at c.
- 15. Let f : R → R be defined by setting f(x) := x if x is rational, and f(x) = 0 if x is irrational.
 (a) Show that f has a limit at x = 0.
 - (b) Use a sequential argument to show that if $c \neq 0$, then f does not have a limit at c.
- 16. Let $f : \mathbb{R} \to \mathbb{R}$, let *I* be an *open* interval in \mathbb{R} , and let $c \in I$. If f_1 is the restriction of *f* to *I*, show that f_1 has a limit at *c* if and only if *f* has a limit at *c*, and that the limits are equal.
- 17. Let $f : \mathbb{R} \to \mathbb{R}$, let *J* be a *closed* interval in \mathbb{R} , and let $c \in J$. If f_2 is the restriction of *f* to *J*, show that if *f* has a limit at *c* then f_2 has a limit at *c*. Show by example that it does *not* follow that if f_2 has a limit at *c*, then *f* has a limit at *c*.