Exercises for Section 4.1

- 1. Determine a condition on $|x 1|$ that will assure that: (a) $|x^2 - 1| < \frac{1}{2}$ (b) $|x^2 - 1| < 1/10^{-3}$, (c) $|x^2 - 1| < 1/n$ for a given $n \in \mathbb{N}$, (d) $|x^3 - 1| < 1/n$ for a given $n \in \mathbb{N}$.
- 2. Determine a condition on $|x 4|$ that will assure that:

(a)
$$
|\sqrt{x} - 2| < \frac{1}{2}
$$
, (b) $|\sqrt{x} - 2| < 10^{-2}$.

- 3. Let c be a cluster point of $A \subseteq \mathbb{R}$ and let $f : A \to \mathbb{R}$. Prove that $\lim_{x \to c} f(x) = L$ if and only if $\lim_{x \to c} |f(x) L| = 0$ $\lim_{x\to c}|f(x)-L|=0.$
- 4. Let $f := \mathbb{R} \to \mathbb{R}$ and let $c \in \mathbb{R}$. Show that $\lim_{x \to c} f(x) = L$ if and only if $\lim_{x \to 0} f(x + c) = L$.
- 5. Let $I := (0, a)$ where $a > 0$, and let $g(x) := x^2$ for $x \in I$. For any points x, $c \in I$, show that $|g(x) - c^2| \le 2a|x - c|$. Use this inequality to prove that $\lim_{x \to c} x^2 = c^2$ for any $c \in I$.
- 6. Let I be an interval in \mathbb{R} , let $f: I \to \mathbb{R}$, and let $c \in I$. Suppose there exist constants K and L such that $|f(x) - L| \le K|x - c|$ for $x \in I$. Show that $\lim_{x \to c} f(x) = L$.
- 7. Show that $\lim_{x \to c} x^3 = c^3$ for any $c \in \mathbb{R}$.
- 8. Show that $\lim_{x \to c} \sqrt{x} = \sqrt{c}$ for any $c > 0$.
- 9. Use either the ε - δ definition of limit or the Sequential Criterion for limits, to establish the following limits.
	- (a) $\lim_{x \to 2} \frac{1}{1-x} = -1$, (b) $\lim_{x \to 1}$ $\frac{x}{1+x} = \frac{1}{2},$ (c) $\lim_{x \to 0} \frac{x^2}{|x|} = 0$, (d) $\lim_{x \to 1}$ $rac{x^2 - x + 1}{x + 1} = \frac{1}{2}.$
- 10. Use the definition of limit to show that

(a)
$$
\lim_{x \to 2} (x^2 + 4x) = 12
$$
,
 (b) $\lim_{x \to -1} \frac{x+5}{2x+3} = 4$.

11. Use the definition of limit to prove the following.

(a)
$$
\lim_{x \to 3} \frac{2x + 3}{4x - 9} = 3
$$
, (b) $\lim_{x \to 6} \frac{2x + 3}{4x - 9} = 3$

- 12. Show that the following limits do not exist.
	- (a) $\lim_{x\to 0}$ $\frac{1}{x^2}$ $(x > 0)$, (b) $\lim_{x \to 0}$ $x \rightarrow 0$ 1 $\frac{1}{\sqrt{x}}$ $(x > 0)$, (c) $\lim_{x \to 0} (x + \text{sgn}(x)),$ (d) $\lim_{x \to 0}$ $\sin(1/x^2)$.
- 13. Suppose the function $f : \mathbb{R} \to \mathbb{R}$ has limit L at 0, and let $a > 0$. If $g : \mathbb{R} \to \mathbb{R}$ is defined by $g(x) := f(ax)$ for $x \in \mathbb{R}$, show that $\lim_{x \to 0} g(x) = L$.

 $rac{x^2 - 3x}{x + 3} = 2.$

- 14. Let $c \in \mathbb{R}$ and let $f : \mathbb{R} \to \mathbb{R}$ be such that $\lim_{x \to c} (f(x))^2 = L$.
	- (a) Show that if $L = 0$, then $\lim_{x \to c} f(x) = 0$.
	- (b) Show by example that if $L \neq 0$, then f may not have a limit at c.
- 15. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by setting $f(x) := x$ if x is rational, and $f(x) = 0$ if x is irrational. (a) Show that f has a limit at $x = 0$.
	- (b) Use a sequential argument to show that if $c \neq 0$, then f does not have a limit at c.
- 16. Let $f : \mathbb{R} \to \mathbb{R}$, let I be an *open* interval in \mathbb{R} , and let $c \in I$. If f_1 is the restriction of f to I, show that f_1 has a limit at c if and only if f has a limit at c, and that the limits are equal.
- 17. Let $f : \mathbb{R} \to \mathbb{R}$, let *J* be a *closed* interval in \mathbb{R} , and let $c \in J$. If f_2 is the restriction of f to *J*, show that if f has a limit at c then f_2 has a limit at c. Show by example that it does not follow that if f_2 has a limit at c, then f has a limit at c.